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1 Introduction

In recent decades, a striking pattern has emerged in developed countries: women are increas-

ingly outperforming men in educational achievement (Bertocchi and Bozzano, 2020; Reeves,

2022). These differences appear early in life, with girls showing advantages in verbal skills,

reading and writing abilities, and socio-emotional development within the first few years

(Palejwala and Fine, 2015; Beck et al., 2023). Two key patterns in these early gender gaps

are particularly intriguing. First, boys show greater variability in their early skills compared

to girls. Second, the gaps follow a socioeconomic gradient, with boys from disadvantaged

backgrounds falling particularly far behind their female peers (Autor et al., 2023). These

patterns suggest that boys’ development may be more sensitive to their early childhood envi-

ronment, especially parental investments, than girls’ development (Bertrand and Pan, 2013;

Fan, Fang, and Markussen, 2015). This paper examines how biological and social factors

interact to produce these gender differences in early-life skill development.

Prior research has established that gender education gaps emerge during early childhood

and that boys’ development is particularly sensitive to their social environment. However,

two crucial aspects remain largely unexplored: the role of genetics in explaining these gaps

and the key mechanisms driving the social gradient. We address these questions by building

on economic models of skill formation (Cunha and Heckman, 2008; Agostinelli and Wiswall,

2020; Attanasio et al., 2020). Our approach formally models how children acquire skills

by estimating the technology of skill formation separately for boys and girls. We extend

the traditional model by incorporating both biological factors (measured through genetic

markers) and social factors (captured by socioeconomic status) that are determined before

birth, along with observable differences in the early childhood environment such as parental

investments, following the approach developed in our previous work (Houmark, Ronda, and

Rosholm, 2024). Besides the sex chromosome, there are no gender differences in biological

and social factors determined before birth.1 Therefore, any gender differences in skills that

emerge in early childhood must arise solely through differential responses to these initial

1While it is intuitive that there shouldn’t be any gender differences in social factors determined before
birth (assuming no parental sex selection), it is less clear whether the same applies to genetic factors. Our
comparison of genetic effects across genders relies on two distinct facts. First, due to independent assortment,
different chromosomes are inherited independently of each other, meaning that the inheritance of autosomes
(chromosomes other than the sex chromosomes) is independent of the inherited sex chromosome. Second,
previous research has established that the genetic architecture of educational attainment is very similar across
sexes (Okbay et al., 2016; Lee et al., 2018), indicating that the genetic markers associated with educational
attainment are highly correlated across genders. These two facts allow us to compare the genetic effects
across genders in this paper, as any differences in the genetic effects on skill development between boys and
girls can be attributed to differential responses to the same genetic influences rather than differences in the
genetic influences themselves.
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conditions. Our model captures the evolution of skills as a function of these initial conditions,

allowing us to directly compare the relative importance of genetic versus social influences

in shaping gender gaps in early-life cognitive ability. By providing a more comprehensive

assessment of the determinants of early skill development, we aim to illuminate the key

drivers of gender differences in human capital accumulation.

Our empirical analysis relies on data from the Avon Longitudinal Study of Parents and

Children (ALSPAC), which allows us to measure children’s skills at different stages of early

development from ages 0 to 7. The study has collected detailed information on family

investments and molecular genetic data from the child participants and both parents. From

this genetic data, we construct polygenic indexes that summarize into a single score the

effect of millions of genetic variants on observable traits like educational achievement and

cognitive ability. These indexes have been widely used in social science research, predicting

a range of economic and social outcomes.2 Crucially, when we control for parental genes,

variation in children’s genetic indexes can be interpreted causally (Benjamin et al., 2024).

Our exploratory analysis reveals that gender gaps in early cognitive skills favor girls

throughout the early childhood period. The gaps range from 0.30 standard deviations at

ages 2-3 to 0.13 standard deviations at ages 6-7. Notably, the gender gaps in early cognitive

skills are not constant across the social and genetic distributions. Instead, these gaps are

mostly driven by boys at the lower end of both the socioeconomic and genetic distributions.

That is, boys living in low socioeconomic status households and those with lower genetic

potential for education increasingly lag in development compared to similar girls. While the

heterogeneity in gender gaps across socioeconomic status has been previously documented

(e.g., Autor et al. (2023)), the heterogeneity across the genetic spectrum is a novel finding.

To understand these patterns, we estimate a structural model of skill formation. This

model allows us to decompose the gender gap in early skills into its different channels. We

start by estimating the investment policy function, which characterizes how parents allocate

investments in their child based on the child’s skills and family environment. We find that

parents invest more in girls than in boys on average across all ages, with the largest gaps

emerging around ages 4-5. While parents reinforce initial differences in skills by investing

more in boys and girls with a higher genetic potential for education and higher initial skills,

we find that parents are more sensitive to the initial skills of boys. That is, parents tend to

comparatively under-invest in boys from lower socioeconomic families and with lower initial

2PGIs for educational attainment have been shown to predict early childhood skills (Belsky et al., 2016;
Houmark, Ronda, and Rosholm, 2024), school achievement (Ward et al., 2014; Houmark et al., 2022),
educational attainment (Rietveld et al., 2013; Domingue et al., 2015; Okbay et al., 2016; Lee et al., 2018;
Ronda et al., 2022), as well as earnings and wealth (Papageorge and Thom, 2019; Belsky et al., 2018; Barth,
Papageorge, and Thom, 2020).
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genetic potential in comparison to similar girls.

Our analysis reveals fundamental differences in the technology of skill formation that

describe how boys and girls develop skills over time. We find that boys’ skill development

is generally more responsive to all inputs than girls’. First, when parents invest time and

resources, these investments have a stronger effect on boys’ development. Second, boys show

stronger ’self-productivity’ of skills—meaning that their current skills more strongly influence

their future skill development. Third, their genetic predispositions have a larger impact on

their development, particularly as they get older. This greater sensitivity to all inputs helps

explain two key patterns: why we observe more variation in boys’ skills overall, and why boys

at both ends of the socioeconomic and genetic distributions show more extreme outcomes

than girls.

To understand how these various factors combine to create gender gaps, we simulate

children’s skill development under different scenarios. Through our simulations, we uncover

two key mechanisms that explain why girls typically receive more parental investment than

boys. First, parents tend to invest more in children who already show higher skill levels—and

since girls start with higher average skills, they receive more investment. Second, this pattern

of reinforcing existing advantages is stronger for boys than girls. As a result, boys from

disadvantaged backgrounds or with lower genetic predispositions receive particularly low

levels of investment compared to similar girls. The combined effect is substantial: differences

in parental investment patterns account for 18% of the observed gender gap in skills at ages

6-7.

The remaining variation in the gender gap is explained by gender differences in the tech-

nology of skill formation. Via the simulations, we learn that the socioeconomic gradient in

the gender gap can be explained by boys being more sensitive to the inputs to the technol-

ogy of skill formation. This is because the family socioeconomic environment influences both

early skills and parental investments, and boys are more sensitive than girls to both of these

inputs. In contrast, the genetic gradient in the gender gap is solely explained by gender

differences in the direct effect of genes on skill formation. The simulations can also help us

understand why boys are more likely to outperform girls at the tails of the skill distribution

even though they lag girls developmentally on average. This is again because boys are more

sensitive to early life conditions, and although that hinders the development of boys at the

lower end of the socioeconomic and genetic distribution it also boosts the development of

boys at the higher end of the distribution.

Lastly, while the model can help us better understand the variation in the gender gaps,

it doesn’t fully explain why girls develop at faster rates than boys on average. In the
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model, this is captured by differences in the total factor productivity of skills, with girls

being more productive than boys at developing their skills conditional on their genetics and

socioeconomic environment. Whether this is due to innate biological differences or due to

unobserved social factors that are not accounted for by our model is left for future research.

Our analysis provides new insights into the origins of gender differences in early human

capital accumulation by moving beyond mean differences and characterizing the distribution

of gender skill gaps across both the biological and social spectrum. The finding that gender

gaps are significantly larger among children with lower genetic endowments - and that this

is driven primarily by boys’ greater sensitivity to these genetic influences in the skill de-

velopment process - highlights the importance of the nature-nurture interaction in shaping

gender disparities. Our results also point to a more nuanced role of the family environment

in driving these gaps, with parental investment behavior amplifying initial skill disparities

more strongly among boys.

An important caveat to our findings is that differences in genetic sensitivity between

boys and girls do not represent fixed or unchangeable developmental paths. While our

analysis focuses primarily on parental investments, genetic effects can operate through many

environmental channels. As emphasized in recent literature (Turkheimer et al., 2003; Harden,

2021), genes and environment constantly interact to shape development—neither operates

in isolation. Consider this example: If schools tend to provide additional support only to

boys with high genetic predispositions for academic achievement while supporting girls more

uniformly, this would appear in our analysis as boys being more sensitive to their genetic

endowments. In this case, changing school policies to provide more uniform support could

reduce the apparent genetic sensitivity gap between boys and girls. The same principle

applies to parental investments: if parents adjust their investments more strongly based on

their sons’ genetic predispositions than their daughters’, this creates an apparent difference in

genetic sensitivity that could be addressed through changes in parenting practices. Therefore,

our findings highlight the complex interplay between genes and environment in shaping

developmental outcomes and underscore the potential for environmental interventions to

mitigate gender disparities.

Our findings have direct implications for education policy and research. For policymakers

and educators, our results suggest specific intervention strategies: First, programs should

prioritize boys from disadvantaged backgrounds, where gender gaps are largest and most

consequential. Second, policies should recognize that the same interventions may have dif-

ferent effects on boys versus girls, requiring tailored approaches. For researchers, our work

demonstrates the importance of moving beyond simple average differences between boys and

girls. Understanding gender gaps requires examining the full distribution of outcomes and
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considering how biological and social factors interact. While our specific findings come from

one cohort in one context, we provide a framework that can be applied more broadly as ge-

netic and developmental data become available for other populations. This approach opens

new avenues for understanding how genetic and environmental factors jointly shape gender

differences in human capital development.

The remainder of the paper develops our analysis in several steps. We begin by describing

our unique dataset and documenting the basic patterns of gender gaps in early childhood

(Section 2). We then develop our conceptual and empirical framework for analyzing skill

formation (Section 3). Section 4 presents our main estimation results on gender differences

in the skill formation technology and investment functions. We then use these estimates

to simulate counterfactual scenarios (Section 5) and decompose the sources of gender gaps

(Section 6). We conclude by discussing the implications of our findings for policy and future

research (Section 7).

2 Data and Preliminary Analysis

In this section, we introduce the ALSPAC dataset, describe the key variables used in our

analysis, and provide a preliminary examination of the relationship between genes linked to

educational attainment, socioeconomic status, and gender gaps in early skills. We demon-

strate that substantial gender gaps in early skills exist and are more pronounced among

children with lower genetic potential for education and those from low socioeconomic status

households.

2.1 The Avon Longitudinal Study of Parents and Children (ALSPAC)

The ALSPAC is an ongoing British longitudinal birth cohort study that follows 14,541 women

recruited during pregnancy between April 1991 and December 1992, along with their 14,062

children. Epidemiologic researchers from the University of Bristol collected the data to

study the environmental and genetic factors affecting human health and development (Boyd

et al., 2013; Fraser et al., 2013).3 The study is particularly well-suited for our analysis as it

collects detailed information on children’s development, family socioeconomic background,

and genetic information from both children and their parents, providing a comprehensive

picture of the biological and socioeconomic factors influencing child development.

The developmental and socioeconomic data are based on questionnaires sent to the child’s

3The study website (http://www.bristol.ac.uk/alspac/researchers/our-data/) provides a fully searchable
data dictionary and variable search tool containing details of all available data. Ethical approval for this
study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees
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primary caregiver (usually the mother) at regular intervals, starting before the child’s birth.4

The caregiver responds to questions about the child’s development, behavior, parenting

practices, activities, and home environment. The genetic data is derived from blood samples

collected from a subset of children and their parents, with genotype data extracted and made

available to researchers.5

Our analysis focuses on the first seven years of the child’s life. We construct our analytic

sample by including families with valid information on measures of childhood development

and parental investments from ages 0 to 7. We exclude families with missing genetic infor-

mation for the child or both parents or with missing information on many skill or investment

measures.6 Furthermore, we limit our sample to individuals of European ancestry, as ge-

netic analyses using polygenic scores are only meaningful when comparing individuals of the

same ancestry.7 The resulting analytic sample contains information on 4,510 individuals,

consisting of 2,298 males and 2,212 females.

2.2 Key Variables and Summary Statistics

2.2.1 Measures of Early Skills and Parental Investments

We utilize measures of early skills collected from the primary caregiver questionnaires for

children aged 0 to 7. Specifically, we focus on measures related to child skill development

from the ”milestones” and ”abilities and disabilities” sections of the questionnaires. In these

sections, the primary caregiver is presented with a list of tasks that children gradually learn

as they grow and is asked to indicate whether the child (i) ”Can do it well” or ”Does it

often”, (ii) ”Can do it but not very well” or ”Has done it once or twice”, or (iii) ”Has not

yet done it”. We select a subset of measures that capture children’s ability to process new

information, perform various tasks, and learn abstract concepts such as language. Table 1

displays the selected measures.

For family investments, we focus on measurements from the ”you and your child” sections

of the primary caregiver questionnaires. We select a subset of measures that capture aspects

of the family environment related to behaviors and activities involving the child and parents.

To achieve balance between parents, we include several measurements specific to both the

4Informed consent for the use of data collected via questionnaires and clinics was obtained from partici-
pants following the recommendations of the ALSPAC Ethics and Law Committee at the time.

5Consent for biological samples was collected in accordance with the Human Tissue Act (2004).
6When genetic information is available for the child and one parent, we can confidently impute the missing

genetic information of the second parent using the method developed by Young et al. (2022).
7Genetic analysis using polygenic scores is only meaningful when comparing individuals of the same

ancestry (see Martin et al. (2017) or Mostafavi et al. (2020) for a detailed discussion).
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mother and the father, in addition to neutral measurements. For these measurements, the

primary caregiver indicates whether the parent engages in certain activities with the child

(e.g., ”Frequency child goes to the library”) and at what frequency: (i) ”Nearly every day”,

(ii) ”2-5 times per week”, (iii) ”Once per week”, (iv) ”Once per month”, (v) ”A few times

per year”, or (vi) ”Never”. Table 2 presents the selected measures.

Our main analysis, described in Section 3, employs a benchmark econometric model

that includes a measurement system to identify the distributions of unobserved skills and

investments using these observed measures. However, for the preliminary analysis presented

in this section, we construct crude measures of skills and investments by averaging the

available measures at each age and standardizing the aggregated measures to have a mean of

zero and a variance of one for the full sample. Table 3 reports summary statistics for these

crude measures, disaggregated by gender. Females comprise 49% of our sample. We observe

substantial gender gaps in both skills and investments, with girls having significantly higher

skills in all periods and girls also receiving significantly more parental investments in all but

one period.

2.2.2 Measure of Socioeconomic Status

Socioeconomic status (SES) is a proxy for the economic and social resources present in the

home the child is born into. Higher family SES thus indicates a higher quality environ-

ment during childhood, which is associated with investments in child development and the

subsequent development of various skills and preferences (Falk et al., 2021). While there

is no universally agreed upon measure of SES, it is common to use parental education and

income which appears to capture substantial inequality in environmental quality of relevance

for child development (Bradley and Corwyn, 2002; Bornstein et al., 2003). Following this

tradition, we create an SES index based on family income and average parental educational

attainment. We first standardize the income and education measures, then take the average

and standardize it again to have a mean of zero and a standard deviation of one within our

sample. We measure parental income and education in the first survey right after the child

is born. This measure is used in the analysis as a proxy for home quality to investigate

achievement gaps with respect to different childhood home environments.

2.2.3 Polygenic Index for Educational Attainment

The standard approach to quantifying the combined influence of millions of genetic variants

is to summarize this variation into a so-called polygenic score or polygenic index (PGI).

A PGI is a linear combination of the individual genetic variants weighted by how strongly
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the specific variants are thought to influence the outcome of interest. For our purpose,

we therefore use PGIs for educational attainment and cognitive ability. The weights are

externally derived in genome-wide association studies (GWAS).

Formally, a PGI for a particular outcome, p (pgii,p), is the best linear predictor based

on the individual genetic variants gis weighted by the strength of association between each

SNP and the outcome of interest:

pgii,p =
S∑

s=1

βp
sgis (1)

where gis is individual i’s variant at location s, and βp
s is the GWAS weight for variant s

and outcome p. Because gis does not include the sex chromosomes, there are no general

differences in this score between boys and girls.

For our empirical model, we utilize three different PGIs to correct for measurement error

in the latent genetic factor (see Appendix A.1.2 for details). The PGIs are based on different

GWAS samples and/or outcomes. Two of the PGIs capture genetic variants associated

with educational attainment. The first is based on the GWAS conducted using 23andMe

participants and the second is based on the GWAS sample in Lee et al. (2018) excluding

23andMe participants. The important point here is that the two indexes are then based on

two different, non-overlapping samples. The third PGI comes from the GWAS for cognitive

performance also based on the sample in Lee et al. (2018) excluding 23andMe participants8.

When possible, we impute missing parental genotypes before constructing the PGIs. If the

genotypes are observed for a parent-offspring pair, the genotype of the missing parent can

be inferred using the method by Young et al. (2020).9

PGIs have several appealing features. A key advantage is that they allow for the measure-

ment of genetic variation relevant to a particular outcome at the individual level. Because

we have genetic information on children and their parents, we can fully exploit the natural

experiment created by the inheritance process, whereby variation in the child’s PGI is ex-

ogenous conditional on the parents’ PGIs. Furthermore, our latent factor approach allows

us to construct several independent measures of the genetic factor, enabling us to account

8We use the publicly available summary statistics at the SSGAC website, which includes the summary
statistics of all meta-analysis of all discovery cohorts except 23andMe, as well as private summary statistics
provided to us by 23andMe directly.

9The idea is that one allele on the missing parental genotype can be inferred exactly unless both the
child and the observed parent are heterozygous (have exactly one minor allele). For example, in the case
where the mother has two minor alleles (say, CC), and the child has only one minor allele (say, GC), the
major allele (G) must have been inherited from the father. The other paternal allele is then known only in
expectation based on information about the population frequencies for individuals from a similar ancestry
group.
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for measurement error in our estimates.

More importantly, the EA PGI can be used to study gender differences in the genetics

of skill formation. First, the distribution of the EA PGI is equal across genders since the

indexes are constructed using genetic variants from all autosomes (chromosomes other than

the sex chromosomes), and the inheritance of autosomes is independent of the inherited sex

chromosome due to independent assortment.10 Second, previous research has shown that the

genetic architecture of educational attainment is very similar across sexes, with a near-perfect

correlation among the estimated effects of genetic markers on educational attainment across

genders (Okbay et al., 2016; Lee et al., 2018). This implies that the same genetic markers

that matter for the educational attainment of men also matter for the educational attainment

of women. Therefore, differences in the average return to a combination of these markers

(i.e., the EA PGS) are informative about true differences in returns to genes across genders.

However, some limitations to the use of PGIs should also be recognized. PGIs do not

necessarily capture all relevant genetic effects. First, because the PGI only measures the

linear effects of common variants, any gene-gene interactions or rare variants that influence

skill formation will not be measured. The omission of rare variants leads to an underes-

timation of heritability for many traits (Wainschtein et al., 2022). Second, because there

is no large GWAS for the cognitive ability of young children, our PGI might miss genetic

variants that are important for our outcome but not for adult outcomes. However, this is not

a major issue because we are interested in the cognitive development of children insofar as

it translates into cognitive ability or educational attainment later in life. It also means that

we only capture gender differences in the genetic influences on parental investments insofar

as they are related to children’s cognitive development or educational attainment. If other

types of investments are productive only for other types of skills, we do not estimate how

they depend on genetic endowments or how they differ across gender. Finally, a limitation

is that the GWAS weights (βw
j s in Equation 1) are always measured with some error, which

generally leads to attenuation bias in the estimates of genetic effects. However, we have no

reason to believe this attenuation bias should differ across genders, and the factor analytic

approach detailed in Section 3.2 should correct for this error under reasonable assumptions.

2.3 Relating Genes and SES to the Gender Gap in Early Skills

To motivate the exercises carried out in the rest of the paper, we first present some pre-

liminary evidence relating variation in the EA PGI and in SES to the gender gap in early

life skill formation. We first explore whether the skill gradients across SES differ between

10Independent assortment ensures that the genetic inheritance is independent across all chromosomes.
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boys and girls. This is similar to the exercises carried out by Autor et al. (2019). We then

check whether the gradients are robust to controlling for genetic variation. Next, we perform

the same exercise but start by estimating the gradients by child genetics and then explore

whether they are robust to controlling for environmental variation.

Table 4 displays the estimates for the socioeconomic gradients. Panel A shows that, on

average across the sample periods, the returns to SES are similar for boys and girls. For

both genders, the importance of SES also appears to grow over time. However, we see a

tendency for the importance of SES to grow faster for boys than for girls. By ages 6-7, the

cognitive skill formation of boys is more sensitive to variation in SES. As girls on average

have higher skills than boys (see Table 3, this is consistent with earlier findings about the

gender gap being concentrated at the bottom of the socioeconomic distribution (Autor et al.,

2019, 2023).

In Panel B, we see that the estimates are robust to controlling for genetic variation in

the form of the PGIs for the child and both parents. This suggests that the socioeconomic

gradients do not primarily reflect different sensitivities to genetics. However, a limitation

of this reduced-form approach is that the PGIs are noisy proxies for the underlying genetic

factor. This motivates the econometric model that we set up in Section 3 using a factor

analytic approach to control for measurement error in the skill and investment measures as

well as the genetic information.

Table 5 displays the corresponding estimates for the genetic gradients. Similar to what we

showed for SES, the importance of genetics for early life skill formation appears to increase

over the early childhood periods. We also observe a stronger genetic gradient for boys than

for girls in all periods. This suggests that boys are not only more sensitive to socioeconomic

disadvantage but also to genetic disadvantage. Importantly, even if genes are more important

for the development of boys, it does not imply that this genetic effect operates independently

of the environment. Indeed, one of the advantages of our structural model described in the

next section is that it allows us to estimate to what extent these genetic effects operate

through parental investments – one of many potential environmental channels missed by

these reduced form estimates.

In Panel B, we again include the parental PGIs as controls. Unlike the estimates for

SES, this has the additional advantage that we can interpret the estimates of the returns

to the child’s PGI as causal because the variation is random when conditional on parental

genotypes. We find that the gender difference remains with respect to this causal genetic

effect, as the skill formation of boys is more sensitive to differences in their PGI. For girls, the

estimates are insignificant. However, as explained the PGI suffers from classical measurement
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error stemming from uncertainty in the PGI weights which will lead to attenuation bias

(Benjamin et al., 2024) – an issue we return to in the next section.

3 Main Econometric Model

To better understand the dynamics highlighted in our preliminary analysis we estimate a

structural model of skill formation for boys and girls separately. We closely follow the

approach developed in Houmark, Ronda, and Rosholm (2024) to model the dynamics of

biological and social influences on skill formation. We jointly estimate the evolution of skills

and investments at different periods from birth until age 7. We control for parental genes to

causally estimate the impact of genes on skill formation. We also treat child skills, parental

investments, and the underlying genetic factors as latent variables to address measurement

error. We estimate all parameters in the structural model separately for boys and girls

3.1 Model of Skill Formation

The model considers a family with a single child and two parents. We model the evolution

of skills from birth (t = 0) until the end of the child’s early development at age 7 in period

T = 5. Skills are complex traits jointly determined by the child’s genetic makeup, social

environment, and interactions and experiences directly determined by parents, which we refer

to as parental investments. All of these can be different for boys and girls. The model has

three main components. First, we have the initial skill endowments function that describes

how genetics and the social environment influence skills at very early ages (ages 0-2). Second,

we have the investment policy function that describes how parental investments are decided

in response to the child’s current stock of skills, the child’s genetic factor, and the family’s

social environment. Third, we have the technology of skill formation that describes how

children’s skills evolve as a function of the previous stock of skills, parental investments, the

child’s genetics, and the family’s social environment. We describe these three functions in

more detail below.

The Initial Skill Endowments Function:

The child is born in period 0 with a set of initial skill endowments. Let θi0 be the skill

endowment of child i at birth. The initial skill endowment is a function of the child’s genetic

factor (Gi), the family social environment captured in the model by parental genetic factors

(Gm
i and Gf

i ) as well as the measure of family socioeconomic status (SESi). The latter

factors capture unobserved early life and in utero investments and behaviors that influence

initial endowments. The child’s genetic factor, on the other hand, captures the idea that, for
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the same level of parental investments and behaviors, some children are more able to extract

nutrients and other resources from their mother in utero and in early life. We allow both

of these channels to be different for boys and girls, reflecting the possibility that social and

genetic influences on early skills might be dependent on the child’s sex.

Formally, we assume a log-linear specification for initial skills, so that:

ln θi0 =α1,g Gi + α2,g G
m
i + α3,g G

f
i + α4,g SESi + εi0 (2)

where εi0 is an i.i.d., mean zero, and normally distributed shock to early skills, with a different

variance for each gender (g). The α1,g parameter captures the effect of the child’s genetic

factor on her initial stock of skills (i.e., effects during development in utero). The α2,g, α3,g,

and α4,g parameters capture how the association between her parents’ genetic factors or the

family’s socioeconomic environment with the child’s initial skills can differ for boys and girls.

The Investment Policy Function:

In order to model parents’ investment decisions, we follow previous work by Attanasio,

Meghir, and Nix (2020), Agostinelli and Wiswall (2020), and Attanasio et al. (2020) and rely

on a reduced-form approximation of the parental behavior.11 The reduced form specification

is consistent with multiple structural models of parental investments (see Attanasio, Meghir,

and Nix, 2020), and allows us to abstract from whether parents invest in their children

either due to altruism, paternalistic interest in having well-educated children, or some other

motivation.

The empirical specification for the investment policy function is:

ln Iit = γ1,t,g ln θit + γ2,t,g Gi + γ3,t,g G
m
i + γ4,t,g G

f
i + γ5,t,g SESi + ηit (3)

where ηit are i.i.d., mean zero, and normally distributed shocks with different variances for

boys and girls.

This specification allows for parental investments to respond differently to boys’ and

girls’ existing stock of skills (γ1,t,g) and genetics (γ2,t,g). These components capture both

different parental strategic decisions across genders as well as the idea that different boys and

girls might elicit different responses from their parents because of preferences and behavior

11Parental investment choices depend on parental preferences for child quality, parental budget constraints,
and parents’ beliefs about both the child’s current skills and the technology parameters. All of these com-
ponents could be influenced by parents’ genetic factors. In principle, we could identify the separate genetic
influences on investment choices using a structural model. However, a structural specification would either
require detailed data on parental beliefs or assume that parents know the true production function, which
goes against recent evidence (see, e.g., Cunha, Elo, and Culhane, 2013; Boneva and Rauh, 2018).
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(e.g., enjoying being read stories). These two channels together capture the nurture-of-

nature effect described in Houmark, Ronda, and Rosholm (2024), capturing how parental

investments respond to the child’s genetic makeup. Lastly, different families face different

constraints and have different preferences for investments across gender, which are captured

by γ3,t,g, γ4,t,g, and γ5,t,g.

The Technology of Skill Formation:

As in Cunha, Heckman, and Schennach (2010), the child’s skills in period t + 1, θit+1,

are determined by their current skills, θit, and parental investments Iit. In addition, we

follow Houmark, Ronda, and Rosholm (2024) and allow the child’s genetic factor, Gi, and

the parents’ genetic factors, Gm
i and Gf

i , to enter the production function of skills.

We assume a Cobb-Douglas technology specification in the form:

ln θit+1 = lnAt,g + δ1,t,g ln θit + δ2,t,g Gi + δ3,t,g ln Iit (4)

+ δ4,t,g G
m
i + δ5,t,g G

f
i + γ6,t,g SESi + ϵit

where ϵit is a stochastic technology shock, which we assume is i.i.d. across individuals and

time periods and is normally distributed with mean zero and variance σ2
ϵ,g.

The technology can differ across gender in a variety of ways. First, it is possible for

lnAt,g, the total factor productivity (TFP) parameter at period t, to be different for boys

and girls. This captures the possibility that girls might develop at a different rate than boys

even when they have the same initial skills, genetics, and family environment. In the same

vein δ1,t,g and δ2,t,g capture the possibility that the self-productivity of skills and genes can

be different across genders. Similarly, parental investments and the social environment can

influence boys and girls differently, which is captured by δ3,t,g, δ4,t,g, δ5,t,g, and δ6,t,g.

3.2 Identification and Estimation

Identification of the joint evolution of skills and investments is based on a factor analytic

approach as in Cunha and Heckman (2008) and Cunha, Heckman, and Schennach (2010).

The identification relies on the idea that, while children’s skills and parental investments are

unobserved latent constructs, we observe multiple measures of each latent factor and can

infer both the distribution and scale of the latent factors from the covariance between the

different observable measures. We rely on a similar idea to identify the distribution of genetic

factors, where we treat different polygenic scores as observed measures of the unobserved

genetic factor (see Houmark, Ronda, and Rosholm (2024) for a detailed discussion of this

approach).
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Formally, in each period t, we observe J measurements of the child’s skills and K mea-

surements of parental investments. For each child, mother, and father trio, we also observe

P measurements of their genetics. Let mθ
ijt denote the jth measurement of child i’s skill at

period t, let mI
ikt denote the kth measurement of child i’s parental investment at period t,

and pgii,p denote the pth measurement of the child’s genetic factor. Following Attanasio,

Meghir, and Nix (2020) and Agostinelli and Wiswall (2020), we assume a linear-log relation-

ship between each measurement, the latent child skills θit, and latent parental investments

Iit:

mθ
ijt = µθ

j,t,g + λθ
j,t,g · ln θit + νθ

ijt (5)

mI
ikt = µI

k,t,g + λI
k,t,g · ln Iit + νI

ikt (6)

pgii,p = µG
p,g + λG

p,g ·Gi + νG
ip (7)

where νθ
ijt, ν

I
ikt and νG

ip are i.i.d. measurement errors and λθ
j,t,g, λ

I
j,t,g and λG

p,g are the factor

loadings for skill measurement j, investment measurement k and polygenic index p. Note

that we index each of these parameters by g, meaning that we allow these parameters to

differ by gender. As in Agostinelli and Wiswall (2020), we make no further assumptions on

the distribution of the measurement errors.

In Appendix A we discuss the assumptions needed for the identification of the latent

factors θit, Iit, andGi. We follow the same approach to identify maternal and parental genetic

factors Gm
i and Gf

i . In short, the identification of the system is based on the assumption

that the measurement errors are independent of each other and independent across time

and on normalization on the location and scale of the latent factor. We refer the reader to

Agostinelli and Wiswall (2020), Houmark, Ronda, and Rosholm (2024), and Appendix A for

more details on the assumptions required for identification. In addition to these assumptions,

identification of the evolution of the latent factor requires further restrictions on the location

and scale of the latent factor. In particular, it requires us to observe the same measurement

over time and impose the same value for the factor loading for that measurement over all

the different periods. In practice, we are fixing the scale of the latent factor against this

age-invariant measure.

It is also important to discuss the challenge of identifying group differences in latent

factors. In practice, what we can directly observe from the data are gender differences in

the average values and distributions of the observed measurements. In theory, there are two

reasons that the distribution of measurements can differ across groups. While it is likely

that it reflects actual differences in the unobserved latent factors, it is also possible that it

captures group differences in the mapping from the latent factors and measurements. That
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is, even when the distribution of latent factors is the same across two groups, we might

observe differences in the measurements if the mapping (factor loadings) are different for the

two groups.

While we can never test it directly, we do not consider this a salient concern in our case

since both the measurements of skills (see Table 1) and investments (see Table 2) are objective

questions that should map in a similar way to unobserved skills and unobserved parental

investments across gender. The argument for the genetic constructs could be potentially

more debatable if not by previous analyses in Okbay et al. (2016) and Lee et al. (2018) that

found that the male-female genetic correlation for years of education is close to one, meaning

that the genetic variants related to educational attainment are extremely similar for both

sexes.

Estimation of the model parameters is done in two steps. We first estimate all the pa-

rameters in the measurement systems for each skill, investment, and genetic factor. These

are estimated separately for each gender using the variance-covariance matrix of the mea-

surements for each latent factor. Once the measurement systems are estimated, we proceed

with the estimation of the parameters in the technology of skill formation and investment

policy function. The estimation strategy follows the approach developed in Agostinelli and

Wiswall (2020), and is described in detail in Appendix A.

We rely on a bootstrap procedure for inference. We re-sample the individuals from our

initial sample of boys and girls at random with replacement and re-do all estimation steps

to obtain new model parameters under each new bootstrap sample. The entire procedure

is replicated 1,000 times and is done separately for boys and girls. Using the bootstrap

procedure, we compute the 95% confidence intervals that are reported in the paper. The

procedure takes into account the joint error across all the estimation steps.

4 Main Results

Our structural model provides a framework to characterize the skill formation of boys and

girls. In this section, we report the estimation of the key coefficients of the investment policy

function and technology of skill formation separately by gender and discuss the differences in

the parameter estimates across gender. We further explore the importance of these differences

via simulations in Section 5.
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4.1 The Investment Policy Function

We start by reporting on the investment policy function, which characterizes how parents

allocate investments across children based on their characteristics. The parameter estimates

can be found in Table 7 separately for boys (Panel A) and girls (Panel B). First, looking at

the average levels of investments, E[ln Iit], we learn that parental investments are highest in

early childhood for both genders. Across all periods, parents invest more in girls than boys,

with particularly large differences at ages 4-5, where investments in girls are 0.036 points

higher than in boys, which translates to about one-third of a standard deviation. This is

consistent with average differences in parental time invested in teaching activities favoring

girls documented by Baker and Milligan (2016). We explore the mechanisms behind these

differences in Section 6.1.

Child genetic endowments have a positive effect on parental investments, with larger

effects at younger ages. This means that parents reinforce initial skill differences by investing

more in children with higher existing skills. This effect can be interpreted as causal since

variation in children’s genes is exogenous to environmental effects once we control for parental

genes. This pattern has been previously documented by Breinholt and Conley (2023) and

Houmark, Ronda, and Rosholm (2024). Similarly, we find that, in our sample, parents tend to

reinforce initial differences in skills by investing more in children with a higher stock of skills.

Because skills are influenced by genetic and socioeconomic conditions, this also implies that

parents invest more in children who are initially advantaged genetically or socioeconomically.

This is true for both boys and girls and there is no clear gender differences in this mechanism.

Both parental genes and family socioeconomic status are positively associated with in-

vestments for both genders. While estimates are noisy, we see some evidence that maternal

genes are more positively associated with investments for girls, whereas paternal genes are

more positively associated with investments for boys. This could reflect a gendered pattern

in parental investments where parents spend relatively more time with their same-sex chil-

dren. We also see some indication that mothers’ genes generally matter more than fathers’.

There are no clear patterns in the influence of SES on parental investments across gender.

4.2 The Technology of Skill Formation

Next, we examine the technology of skill formation, which describes how skills evolve over

time based on current skills, parental investments, and child and family characteristics.

Parameter estimates are presented in Table 8 separately for boys (Panel A) and girls (Panel

B).
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First, looking at the average levels of skills, E[ln θit], we see that girls have higher average

skill levels than boys at every period, with the gap increasing over time. At ages 6-7, girls’

skills are about 0.25 standard deviations higher than boys’. The variance in skills, V ar(ln θit),

is initially smaller for boys but becomes significantly larger later in childhood compared to

girls. This is a theme we will come back to when discussing mechanisms in Section 6.

The child’s genetic endowment has a direct positive effect on skill formation even after

accounting for family environment, investments, and prior skills. This effect, which can be

interpreted as causal (see Houmark, Ronda, and Rosholm (2024)), increases over time and is

larger for boys, although gender differences are not statistically significant. An initial genetic

advantage thus continues to pay dividends for the future realization of skills given the same

current observable conditions.

Parental genes do not significantly influence skill formation once we control for family SES

and investments. Family SES does have an additional positive influence on skill formation

after accounting for investments. However, there are no clear differences in this effect across

gender.

There are also no statistically significant gender differences in the self-productivity of

skills, the returns to investments, or the total factor productivity. However, the point esti-

mates suggest that boys have higher self-productivity of skills and returns to investments in

most periods, while girls tend to have higher total factor productivity, which explains their

higher average skill levels. We return to these patterns in Section 6.

5 The Distribution of the Gender Gaps

How do the gender differences in the technology of skill formation and investment policy

function translate into differences in early childhood skills? In this section, we use model

simulations to map the distribution of gender skill gaps under different initial conditions.

By equalizing specific factors across genders, we isolate the influence of each factor on the

overall distribution of the gender gap.

5.1 Simulating the Skills of Boys and Girls

Our model has 4 main initial factors that make up a child’s ”accident of birth”: the child’s

genetic factor (G), the mother’s genetic factor (Gm), the father’s genetic factor (Gf ), and

the family socioeconomic status (SES). These four factors capture the initial allocation

of advantages and disadvantages that are both randomly determined and inherited from

the previous generation, leading to subsequent inequality in skill formation. Given these

17



factors, the child’s gender, and exogenous shocks (ηt and ϵt), we can use the estimated

model parameters to simulate a child’s expected skill development trajectory depending on

their gender.

We randomly draw 10,000 values from the joint distribution of the 4 initial factors (Equa-

tion 8): 
Gk

Gm
k

Gf
k

SESk

 ∼ N(µ,Σ) (8)

where µ = 0 for all 4 factors and Σ is the joint covariance matrix of the 4 parameters shown

in Table 6. This approach relies on the fact that the 4 initial factors are normally distributed

by construction.

For each draw, we simulate 100 trajectories by further drawing shocks to skill formation

(ϵk,s,t) and the investment function (ηk,s,t) over time, using the gender-specific shock variances

estimated in the model. This process gives us a simulated dataset mapping initial conditions

and shocks to latent skills (θ) and parental investments (I) for boys and girls, which can be

represented by:

ln θmk,s,t = Φm
t (Gk, G

m
k , G

f
k , SESk, {ϵk,s}, {ηk,s}|g = m) (9)

ln θfk,s,t = Φf
t (Gk, G

m
k , G

f
k , SESk, {ϵk,s}, {ηk,s}|g = f) (10)

ln Imk,s,t = Θm
t (Gk, G

m
k , G

f
k , SESk, {ϵk,s}, {ηk,s}|g = m) (11)

ln Ifk,s,t = Θf
t (Gk, G

m
k , G

f
k , SESk, {ϵk,s}, {ηk,s}|g = f) (12)

where Φm
t and Φf

t are the mappings translating the initial factors and shocks to skills for

boys and girls, and Φm
t and Φf

t are the mappings translating the initial factors and shocks

to parental investments for boys and girls.

We use these simulations to explore how gender skill gaps vary across the distributions

of initial genetic endowments and family environments.

5.2 Gender Differences in the Distribution of Skills

Using the approach discussed in Section 5.1 we can explore how the gender gap in skills

at ages 6-7, the last period in our data, varies across both the child’s genetic factor and

her family environment. For all the analyses in this section, we describe the gap from the
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perspective of girls, so that a negative value in the gender gap implies that boys are lagging

in their skill development compared to similar girls. Also, for all analyses, the skills are

standardized with respect to the distribution of girls’ skills.

The distribution of the gender gaps in skills at ages 6-7 can be seen in Figure 2. Figure

2(a) plots the kernel density distribution of the gender gaps. We also report on the mean and

standard deviation of the gap in the first row of Table 9.On average, girls’ skills are about

0.25 standard deviations higher than that of boys. However, there is significant variation in

the distribution, with about 17% of boys having higher latent skills than girls with similar

genetics, family environment, and developmental shocks. This figure shows how averages

can be deceiving and that there is important variation in the average gender skill gaps.

To better understand this variation, in Figures 2(b) and 2(c) we plot the gender gap in

skills at ages 6-7 over the distribution of the child’s initial skills and family environment. We

do so in two ways. First, in blue, we plot the raw relationship in the data when we simulate

the skills and investments using the observed covariance between the 4 initial factors. Second,

in red, we plot the relationship due to each specific factor (Gi and SESi). We do so by re-

simulating the skills and investments but assuming the 4 initial factors are independent.

This breaks the correlation between the factors and is akin to varying one of the factors

while holding all other factors constant, allowing us to estimate the influence of each initial

factor separately.

Figure 2(b) plots the gender gaps in skills at ages 6-7 as a function of SES. It confirms

previously documented findings that boys appear more sensitive to the environment than

girls (Bertrand and Pan, 2013; Autor et al., 2019). That is, the gender gap is higher among

children growing up in disadvantage than among children growing up in more advantageous

environments. Figure 2(b) also shows that this heterogeneity is partially explained by differ-

ences in genetics among high and low SES families as the heterogeneity across SES decreases

once we account for the correlation between SES and genetic factors. Hence, what appears

to be a greater sensitivity to environmental conditions among boys turns out to partly reflect

a greater sensitivity to genetic endowments. This leads to the results in Figure 2(c).

Figure 2(c) shows one of the key new findings from our paper. The gender gaps in skills

are highly dependent on the child’s genetic factor (Gi). For children with a high genetic

potential for education, we see that boys develop at a similar or higher rate than girls.

However, at the other end of the distribution, for children with a low genetic potential for

education, boys significantly lag behind girls. This is true even after we account for the

correlation between the child’s genetic factor and environmental effects.

These results can reconcile two seemingly contradictory patterns - that boys both fall
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behind girls on average in school but are also over-represented among the highest achieving

students (see e.g., Penner and Paret (2008), Baye and Monseur (2016), and Machin and

Pekkarinen (2008)). Because boys are more sensitive to genetics and the family environment

than girls, their skill distribution is more variable than girls, meaning that they are both

over-represented at the bottom and at the top of the skill distribution, whereas girls are

more likely than boys to be at the middle of the distribution. Also, given that girls are

significantly ahead developmentally than boys on average, this means that the left tail of the

skill distribution consists almost exclusively of boys.

6 Mechanisms Behind the Distribution of Gender Gaps

In addition to mapping the heterogeneity in the gender gaps, the model can also help us

understand what are the mechanisms that explain the heterogeneity documented in Figure

2(a). For example, is the heterogeneity across SES explained by differences in parental

investments? Or can the differences in the self-productivity of skills help explain why some

boys are developmentally ahead of girls? To answer these questions we re-simulate the

investments and skills of boys while changing the parameters in their investment policy

function and technology of skill formation to resemble the parameter estimates for girls. As

we equate each of the different parameters, we restrict each of the channels via which the

development of boys and girls differ, allowing us to understand the relevance of the different

channels.

6.1 Gender Differences in Parental Investments

We first focus on possible gender differences in parental investments. The blue line in Figure

3(a) plots the distribution of the gender differences in parental investments at ages 4-5. We

focus on ages 4-5 since this is the period where the gender differences in investments are the

largest and the period where investments matter the most for subsequent skill development.

In Section 6.1.1, we instead illustrate the accumulated effect of investments in all periods

for the gender gap in skills in the last period. As can be seen from the blue line in Figure

3(a), the gap in investments is consistently negative, meaning that girls tend to receive a

higher amount of investments than boys. On average, girls receive about a 0.36 standard

deviation higher investment level than boys. This is consistent with previous findings from

the literature looking at gender gaps in parental investment in developed countries (see e.g.,

Baker and Milligan (2016) and Bibler (2020)).12There is also significant variation in the

12Although it is important to note that the reverse pattern is observed in developing countries (see e.g.,
Barcellos, Carvalho, and Lleras-Muney (2014)).
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gender gap in investments, with the gap being close to zero for some children and up to one

standard deviation for others.

Figures 3(b) and 3(c) plot the distribution of the gap across socioeconomic status (SESi)

and child genes (Gi) respectively. The blue lines plot the relationship assuming the 4 inputs

are independent. Figure 3(b) shows that there is very little variation in the gender gap in

investments, if anything, the gap seems to be larger in higher socioeconomic status families.

In contrast, 3(c) shows a substantial heterogeneity across the child’s genetic factor, with boys

with lower genetic potential for education receiving a significantly lower level of parental

investments than comparable girls.

To better understand why such heterogeneity exists we sequentially change each pa-

rameter in the investment policy function for boys to resemble that of girls. That is, we

re-simulate investments and skills for boys imposing the same parameters in the investment

policy function that were estimated for girls. We first change the returns to environmental

effects for boys (γ3,t, γ4,t and γ5,t in Equation 3) to be equal to that of girls. Represented

by the red line in the graphs, this produces very little change in the investment gaps besides

slightly decreasing their overall variance. For the genetic heterogeneity, this is expected

because the variation in the child’s genes is exogenous conditional on parental genes. For

the socioeconomic heterogeneity, this implies that it does not result directly from different

investment profiles across SES for boys and girls.

We then further equate the returns to skills and genes (γ1,t and γ2,t in Equation 3).

Represented by the orange curves, this change substantially decreases the variance in the

investment gap as seen in Figure 3(a). Moreover, it almost eliminates the heterogeneity

in the investment gaps across socioeconomic status and child genes as seen in Figures 3(b)

and 3(c). This shows that a significant part of the gender differences in investment can be

attributed to differences in how parents respond to the skills and behaviors of boys and girls.

The average gap in investments, however, remains substantial and mostly closes only

once we equate the intercept (γ0,t), illustrated by the purple curves. The reason that the

gap does not close completely is because of the average difference in skills between boys and

girls. Parents reinforce initial differences in skills by investing more in children with higher

skill levels, all else equal. Since girls have higher skill levels than boys on average, we observe

higher investments for girls even after we account for differences in the investment policy

function.

These results together demonstrate why girls receive higher levels of investment from

their parents. First, parents tend to reinforce skill differences, and since girls have higher

skill levels on average than boys parents tend to invest more in them. Second, this reinforcing
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behavior is significantly stronger for boys than girls, meaning that boys with lower levels of

skills and a lower propensity for education receive significantly lower levels of investments

than comparable girls. Unfortunately, our data does not allow us to explain why parents

are more responsive to the skills of boys than girls when allocating investments. There are

many possible explanations, including whether this is induced by the child (e.g. girls are

more likely to ask to be taken to a museum all else equal) or by the parent (e.g. optimal

allocation of investments is different across gender). Future research should look into these

different possibilities.

6.1.1 Parental Investments and Gender Gaps in Skills

The gender differences in parental investments documented above can partially explain the

observed differences in skills. This is shown in Figure 4, where we re-do the exercise in

Figure 3 but consider the effect on latent skills at ages 6-7. Again, the blue curves plot the

baseline gender gaps in skills with the 4 initial factors as independent, and the purple curve

represents the gender gaps in skills when all the parameters in the policy function for boys

are set as the parameters estimated for girls.

Figure 4(a) shows how the distribution of the skill gaps changes once we account for

differences in the investment policy for boys and girls. We also document how the average

skill gap and the variance of the gap changes as we equalize the investment policy function

across gender in panel B of Table 9. The overall distribution of gender gaps moves to the

right (smaller gaps), and on average the skill gap decreases from 0.26 standard deviations

to 0.21 standard deviations, a reduction of about 18%. Figures 4(b) and 4(c) also show

that this reduction in the gender skill gap happens across the whole for families across the

socioeconomic spectrum and for children with different genetic endowments. The remainder

of the gap is explained by differences in the technology of skill formation, which we discuss

in the next section.

6.2 Gender Differences in the Technology of Skill Formation

While differences in parental investments across genders explain some of the gender differ-

ences in skill formation, most of the variation is due to gender differences in the technology of

skill formation. We follow a similar approach to the one discussed in the previous section to

better understand which parameters in the technology are important for explaining both the

variance and the mean of the gender gaps in skills. That is, we re-simulate the investment

and skills of boys imposing the same parameters in the technology of skill formation that

were estimated for girls. The results from this exercise are shown graphically in Figure 5
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and numerically in panel C of Table 9.

We start the analysis where we left off, imposing the policy investment parameters esti-

mated for girls onto the simulation for boys, represented by the navy blue curves in Figure 5.

We then change the returns to environmental effects in the technology of skill formation of

boys (δ4,t, δ5,t and δ6,t in Equation 4) to be equal to that of girls. This is represented by the

red line, which overlaps the blue line in the three graphs, meaning that equalizing returns

to environments produces very little change in the gender skill gap distribution. Again, this

is expected for the genetic heterogeneity but is particularly interesting when looking at the

heterogeneity of the gender gap across family SES in Figure 5(b), since it implies that the

heterogeneity across socioeconomic environments is not driven by different returns to SES.

We then equalize the direct effect of the child’s genetic factor in the technology of skill

formation (δ3,t in Equation 4). This significantly decreases the variance in the gender gaps

as shown by the orange curve in Figure 5(a). It also completely explains the heterogeneity

in the gender gaps across the child’s genetic factor. This implies that, in contrast to what

we just showed for SES, most of the heterogeneity in gender skill gaps across genetics can

be attributed to gender differences in the direct effect of genes on skill formation. In other

words, boys are significantly more sensitive in early life to genetics related to educational

attainment than girls are.

The remaining gender differences can be attributed to (i) gender differences due to differ-

ent returns to parental investments, (ii) different returns to own skills (self-productivity), and

(iii) other unexplained differences in development captured by the total factor productivity

parameter (δ2,t, δ1,t, and lnAt in Equation 4). We equate each of these mechanisms one by

one and illustrate the remaining gender skill gap by the purple curve, the green curve, and

the light blue curve, respectively, in Figure 5. Equating the returns to parental investments

and the self-productivity of skills reverses the heterogeneity in the gender skill gap across

SES (Figure 5(b). Equating the self-productivity parameter seems to be especially important

for closing most of the variance in gender gaps (Figure 5(a). The higher self-productivity

of skills for boys can partially explain why boys are more likely to outperform girls at the

right tail of the skill distribution even though they lag behind girls on average. Due to the

higher returns, boys at the top of the skill distribution tend to accumulate skills faster than

comparable girls, increasing their advantage at the top of the distribution.

While these two mechanisms help explain the variance in the gender gaps, the majority

of the average gender gap in skills is still unexplained by our model and is captured by

gender differences in the total factor productivity (lnAt). Whether this is due to biological

differences between girls and boys that cannot be explained by social surveys, or this is
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due to unobserved factors that are not accounted for by our model and data (e.g., gender

differences in socio-emotional skills) is left as an important question for future research.

7 Discussion and Conclusion

To better understand the biological and social determinants of early gender gaps in skills and

their implications for policy, we incorporated genetic factors into a dynamic model of skill

formation. We modeled and estimated the joint evolution of cognitive skills and parental

investments from birth to age 7 separately for boys and girls. Our analysis documents several

important differences in the skill formation process between boys and girls. First, we find that

boys are more sensitive to their own genetic endowments: Conditional on current skills and

parental investments, the future skill development of boys is more sensitive to their genetic

potential for education such that some boys accumulate cognitive skills more rapidly while

others accumulate more slowly relative to girls with similar genetic potential. This greater

genetic sensitivity largely explains why the gender gap in skills is so much larger among

children with lower polygenic indexes. It also explains why, even while girls outperform

boys on average, boys with particularly high genetic potential tend to outperform girls with

similar potential. We also find a stronger association between the child’s genetic potential

and parental investments among boys (Figure 3(c)), indicating that parents are more likely

to reinforce initial genetic differences when allocating resources to sons relative to daughters.

It is important to stress that the different sensitivity to own genetic endowments should

not be interpreted as an effect operating independently of the environment. Within our

framework, this direct genetic effect captures genetic differences that causally affect skill

formation independently only of the specific environment that we call parental investments.

Thus, the effect may operate through other environmental channels that are unobservable

to us. For example, it has been found that girls from a young age allocate more of their own

time to educational activities (Nguyen et al., 2022). If this difference in self-investments is

more concentrated at the lower end of the genetic distribution, it could help to explain how

the direct genetic effect shapes the gender skill gap.

Our estimated model also reveals a higher degree of skill self-productivity among boys.

That is, the rate at which current skills beget future skills is greater for boys compared to

girls, especially at the higher end of the initial skill distribution. This helps explain why

the most skilled boys eventually outperform even the most skilled girls as initial skill gaps

are amplified over time. Finally, we find that eliminating gender differences in parental

investments can close about one-fifth of the early gender gap in skills, as girls start out with

higher average skill levels and benefit from the greater tendency of parents to reinforce these
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initial skill differences among sons.

Yet, the majority of the early gender skill gap cannot be explained by investment differ-

ences or even by gender differences in the productivity of investments or skills in our model.

Instead, it is captured by a sizable gap in the total factor productivity of skills in favor of

girls. Whether this residual gap reflects intrinsic biological differences between boys and

girls in early childhood or the influence of unmodeled factors like non-cognitive skills is an

important question for future research.

Together, these findings highlight the importance of looking beyond mean differences

when studying gender gaps in early skills and point to new directions for policies aimed

at closing these gaps. Our findings suggest that policies aiming to close early gender gaps

in skills would be most effective if targeted to boys at the lower end of the genetic and

socioeconomic spectrum. More broadly, our analysis underscores the need to consider both

social and biological factors to fully understand the roots of gender differences in human

capital development.

A limitation of our analysis is that we measure genetic influences using polygenic indexes

constructed from GWAS on educational attainment and cognitive performance. These in-

dexes proxy for genetic influences on early childhood cognitive development, but they may

miss genetic pathways operating through other non-cognitive or health-related domains that

nevertheless shape skill formation. Another constraint is that we focus exclusively on cogni-

tive skills due to data limitations. It is likely that gender differences in early non-cognitive

skills play an important role in explaining later educational disparities, and this is a fruitful

avenue for future work as new data becomes available.

It is also critical to recognize that our empirical findings pertain to a single cohort in a

particular context, and thus may not generalize to other settings or to more recent cohorts.

The gender differences we estimate may vary across countries and time periods with different

institutions, norms, and policies. Moreover, our analytic sample is restricted to European-

ancestry individuals due to well-known challenges with the portability of polygenic indexes

to non-European populations (Martin et al., 2017; Mostafavi et al., 2020). This points to

the urgent need to diversify genetics research and expand GWAS studies to other ancestries

to ensure that advances in this field do not exacerbate existing health and social inequities

(Martin et al., 2019). While we believe the key insights from incorporating genetics into

social science models of child development are broadly relevant, we cannot test for any

differences in these processes across ancestry groups until more representative genetic data

becomes available.
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Tables and Figures

Table 1: Measures of Child Skills

Period 0 1 2 3 4 5
Measure Age 0-2 2-3 3-4 4-5 5-6 6-7

1 Can build tower of 8 bricks X X X
2 Plays cards (or board games) X X X X X
3 Plays peek-a-boo X
4 Can focus eyes on small object X
5 Can build tower of 4 bricks X
6 Freq. names things X
7 Combines two different words X
8 Can copy vertical line with pencil X
9 Can copy and draw a circle X X
10 Uses plurals X X
11 Uses possessives X X
12 Adds -ing to words X X
13 Adds -ed to words X X
14 Can copy and draw a plus sign / cross X
15 Can copy and draw a square X X
16 Can write their name X
17 Can write any numbers X
18 Knows at least 10 letters X
19 Can read simple words X
20 Can read a story with <10 words per page X
21 Can count up to 20 X
22 Can read a story with >10 words per page X X X
23 Can count up to 100 X X X
24 Can play any board games X X X

Notes: This table reports the individual measures of child skills. An X indicates that the measure
is available in that period and is used in the estimation.
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Table 2: Measures of Investments

Period 0 1 2 3 4
Measure Age 0-2 2-3 3-4 4-5 5-6

1 Freq. goes to places of interest X X X X X
2 Freq. goes to library X X X X X
3 Freq. mum reads to child X X X X X
4 Freq. partner sings to child X X X X X
5 Freq. child taken to park X X X
6 Freq. mum shows child picture books X X
7 Freq. partner shows child picture books X X
8 Freq. partner plays with toys with child X X
9 Freq. partner reads to child X X X X
10 Freq. goes to swimming pool or sports area X X
11 Freq. goes to special classes or clubs X X

Notes: This table reports the individual measures of child investments. An X indicates that the
measure is available in that period and is used in the estimation.
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Figure 1: Distribution of Children’s EA PGI by Family SES: This figure plots the
density of the standardized educational attainment polygenic index (EA PGI) of children,
separately for each gender and decile of family socioeconomic status (SES). The figure
highlights three important facts: (i) the distribution of the EA PGI is the same for boys
and girls due to independent assortment, which means that the inheritance of chromosomes
is independent of the sex chromosomes; (ii) the child’s EA PGI is correlated with the family
environment, likely because the child’s EA PGI is correlated with their parents’ EA PGI,
which in turn influences the family social environment; and (iii) despite the correlation
between the child’s EA PGI and family environment, there is significant overlap in the
distribution of genetic potential for education across all family SES deciles, indicating that
family environment does not fully determine a child’s genetic potential for educational
attainment.
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Table 3: Standardized Measures of Skills and Investments by Gender

Boys Girls Diff
Skills Period 1 -0.0386 0.0401 ∗∗∗

(0.548) (0.543)

Skills Period 2 -0.146 0.152 ∗∗∗

(0.586) (0.574)

Skills Period 3 -0.112 0.117 ∗∗∗

(0.629) (0.522)

Skills Period 4 -0.0882 0.0917 ∗∗∗

(0.633) (0.527)

Skills Period 5 -0.0881 0.0915 ∗∗∗

(0.748) (0.628)

Skills Period 6 -0.0641 0.0665 ∗∗∗

(0.756) (0.603)

Inv. Period 1 -0.0222 0.0231 ∗∗

(0.553) (0.538)

Inv. Period 2 -0.0307 0.0319 ∗∗∗

(0.606) (0.585)

Inv. Period 3 -0.0127 0.0132
(0.536) (0.537)

Inv. Period 4 -0.0537 0.0558 ∗∗∗

(0.488) (0.523)

Inv. Period 5 -0.0438 0.0455 ∗∗∗

(0.489) (0.492)
N 2298 2212 4510

Notes: This table reports means and standard deviations for the standardized skill and investment
measures separately for boys and girls. The last column reports the significance of a t-test for
different means.
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Table 4: SES and Skills by Age

Ages: [0-2[ [2-3[ [3-4[ [4-5[ [5-6[ [6-7[

Panel A (boys):

SES 0.072*** 0.116*** 0.193*** 0.266*** 0.221*** 0.200***
(0.021) (0.021) (0.022) (0.022) (0.022) (0.023)

R2 0.005 0.013 0.031 0.059 0.040 0.031
N 2298 2298 2298 2298 2298 2298

Panel B (boys):

Child’s PGI 0.044 -0.017 -0.026 0.080** 0.108*** 0.089**
(0.038) (0.037) (0.040) (0.040) (0.040) (0.041)

Mother’s PGI 0.008 0.017 0.009 -0.022 0.006 -0.005
(0.029) (0.028) (0.030) (0.030) (0.030) (0.031)

Father’s PGI -0.037 0.025 0.041 -0.003 0.003 0.004
(0.032) (0.031) (0.034) (0.034) (0.034) (0.035)

SES 0.060*** 0.107*** 0.184*** 0.248*** 0.190*** 0.173***
(0.023) (0.022) (0.024) (0.024) (0.024) (0.024)

R2 0.008 0.012 0.031 0.060 0.051 0.038
N 2298 2298 2298 2298 2298 2298

Panel A (girls):

SES 0.097*** 0.157*** 0.200*** 0.257*** 0.228*** 0.151***
(0.021) (0.021) (0.019) (0.019) (0.019) (0.019)

R2 0.009 0.025 0.049 0.079 0.061 0.028
N 2212 2212 2212 2212 2212 2212

Panel B (girls):

Child’s PGI -0.014 0.034 0.001 0.059* 0.040 0.007
(0.040) (0.039) (0.035) (0.035) (0.036) (0.035)

Mother’s PGI 0.016 -0.004 0.040 0.015 0.012 0.014
(0.030) (0.029) (0.026) (0.026) (0.026) (0.026)

Father’s PGI 0.000 -0.040 0.010 -0.029 -0.005 -0.006
(0.034) (0.032) (0.029) (0.029) (0.030) (0.030)

SES 0.093*** 0.152*** 0.182*** 0.242*** 0.220*** 0.143***
(0.023) (0.022) (0.020) (0.020) (0.020) (0.020)

R2 0.005 0.025 0.053 0.081 0.063 0.026
N 2212 2212 2212 2212 2212 2212

Notes: This table reports parameter estimates from regressions used to link the SES index to
children’s skills across childhood. To estimate the sensitivity to SES, we regress at each age the
skill measure on the SES index separately for boys and girls. In Panel B, we add the child and
parental polygenic indexes to the regressions. Skills have been standardized as described in the
data section, with missing values set equal to the median for that measure, allowing for a maximum
of ten such imputations per summary index. The polygenic indexes were constructed using the
summary statistics in Lee et al. (2018) without the 23andMe information with the imputed parental
genotypes. Standard errors are reported in parenthesis.
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Table 5: EA PGI and Skills by Age

Ages: [0-2[ [2-3[ [3-4[ [4-5[ [5-6[ [6-7[

Panel A (boys):

Child’s PGI 0.038* 0.036* 0.054** 0.130*** 0.162*** 0.133***
(0.021) (0.021) (0.023) (0.023) (0.022) (0.023)

R2 0.001 0.001 0.002 0.015 0.022 0.014
N 2298 2298 2298 2298 2298 2298

Panel B (boys):

Child’s PGI 0.044 -0.017 -0.026 0.080** 0.108*** 0.089**
(0.038) (0.037) (0.040) (0.040) (0.040) (0.041)

Mother’s PGI 0.008 0.017 0.009 -0.022 0.006 -0.005
(0.029) (0.028) (0.030) (0.030) (0.030) (0.031)

Father’s PGI -0.037 0.025 0.041 -0.003 0.003 0.004
(0.032) (0.031) (0.034) (0.034) (0.034) (0.035)

SES 0.060*** 0.107*** 0.184*** 0.248*** 0.190*** 0.173***
(0.023) (0.022) (0.024) (0.024) (0.024) (0.024)

R2 0.008 0.012 0.031 0.060 0.051 0.038
N 2298 2298 2298 2298 2298 2298

Panel A (girls):

Child’s PGI 0.019 0.043** 0.077*** 0.110*** 0.100*** 0.048**
(0.021) (0.020) (0.019) (0.019) (0.019) (0.019)

R2 0.000 0.002 0.009 0.015 0.011 0.003
N 2212 2212 2212 2212 2212 2212

Panel B (girls):

Child’s PGI -0.014 0.034 0.001 0.059* 0.040 0.007
(0.040) (0.039) (0.035) (0.035) (0.036) (0.035)

Mother’s PGI 0.016 -0.004 0.040 0.015 0.012 0.014
(0.030) (0.029) (0.026) (0.026) (0.026) (0.026)

Father’s PGI 0.000 -0.040 0.010 -0.029 -0.005 -0.006
(0.034) (0.032) (0.029) (0.029) (0.030) (0.030)

SES 0.093*** 0.152*** 0.182*** 0.242*** 0.220*** 0.143***
(0.023) (0.022) (0.020) (0.020) (0.020) (0.020)

R2 0.005 0.025 0.053 0.081 0.063 0.026
N 2212 2212 2212 2212 2212 2212

Notes: This table reports parameter estimates from regressions used to link the polygenic index
for educational attainment to children’s skills across childhood. To test the sensitivity to the EA
PGI, we regress at each age the skill measure on the polygenic index separately for boys and
girls, controlling for and the first 15 principal components of the genetic matrix. In Panel B,
we add the parental polygenic indexes and SES to the regressions. Skills have been standardized
as described in the data section, with missing values set equal to the median for that measure,
allowing for a maximum of ten such imputations per summary index. The polygenic indexes were
constructed using the summary statistics in Lee et al. (2018) without the 23andMe information
with the imputed parental genotypes. Standard errors are reported in parenthesis.
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Table 6: Initial Factors Covariance Matrix

Factor: Gi Gm
i Gf

i SESi

Gi 1.00 0.56 0.68 0.26
Gm

i 1.00 0.09 0.26

Gf
i 1.00 0.21

SESi 1.00

Notes: This table reports the covariance matrix for the 4 initial factors at birth.

Table 7: Investment Policy function

Panel A: Boys
Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6

(1) (2) (3) (4) (5)
Gi 0.022 0.027 0.018 0.005 -0.003

[ -0.004, 0.044 ] [ -0.011, 0.057 ] [ 0.001, 0.035 ] [ -0.003, 0.014 ] [ -0.012, 0.008 ]
Gm

i 0.017 0.033 0.001 0.003 0.001
[ -0.003, 0.036 ] [ 0.005, 0.069 ] [ -0.014, 0.016 ] [ -0.004, 0.010 ] [ -0.005, 0.007 ]

Gf
i 0.008 0.017 0.003 0.003 0.013

[ -0.013, 0.029 ] [ -0.009, 0.055 ] [ -0.012, 0.019 ] [ -0.004, 0.012 ] [ 0.004, 0.021 ]
SESi 0.108 0.151 0.084 0.042 0.038

[ 0.091, 0.127 ] [ 0.130, 0.177 ] [ 0.068, 0.101 ] [ 0.035, 0.051 ] [ 0.027, 0.047 ]
ln θit 0.297 0.664 0.134 0.060 0.074

[ 0.220, 0.354 ] [ 0.514, 0.809 ] [ 0.099, 0.170 ] [ 0.042, 0.080 ] [ 0.049, 0.094 ]
Constant 4.210 2.798 3.148 2.595 2.530

[ 4.122, 4.324 ] [ 2.406, 3.193 ] [ 3.036, 3.264 ] [ 2.518, 2.664 ] [ 2.450, 2.624 ]

E[ln Iit] 4.627 4.496 3.550 2.791 2.783
V ar(ln Iit) 0.102 0.151 0.050 0.009 0.007

Panel B: Girls
Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6

(1) (2) (3) (4) (5)
Gi 0.030 0.014 0.005 -0.009 0.002

[ -0.005, 0.064 ] [ -0.020, 0.056 ] [ -0.015, 0.024 ] [ -0.018, 0.000 ] [ -0.007, 0.009 ]
Gm

i 0.004 0.050 0.022 0.015 0.006
[ -0.016, 0.028 ] [ 0.014, 0.076 ] [ 0.008, 0.038 ] [ 0.007, 0.022 ] [ 0.001, 0.012 ]

Gf
i -0.009 -0.005 0.006 0.011 0.003

[ -0.037, 0.018 ] [ -0.034, 0.017 ] [ -0.012, 0.025 ] [ 0.003, 0.020 ] [ -0.003, 0.009 ]
SESi 0.113 0.159 0.070 0.043 0.040

[ 0.098, 0.136 ] [ 0.137, 0.191 ] [ 0.055, 0.086 ] [ 0.033, 0.052 ] [ 0.027, 0.047 ]
ln θit 0.320 0.570 0.155 0.082 0.092

[ 0.245, 0.400 ] [ 0.439, 0.727 ] [ 0.112, 0.205 ] [ 0.056, 0.108 ] [ 0.059, 0.114 ]
Constant 4.191 3.053 3.084 2.554 2.489

[ 4.062, 4.301 ] [ 2.636, 3.406 ] [ 2.923, 3.225 ] [ 2.440, 2.647 ] [ 2.403, 2.608 ]

E[ln Iit] 4.657 4.557 3.564 2.827 2.810
V ar(ln Iit) 0.100 0.172 0.049 0.010 0.007

Notes: This table reports the parameter estimates for the investment policy function (Equation
3) separately for boys (Panel A) and girls (Panel B). Each column corresponds to a different
developmental period. We report the associated 95% bootstrap confidence intervals in brackets.
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Table 8: Technology of Skill Formation

Panel A: Boys
Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7

(1) (2) (3) (4) (5) (6)
Gi 0.012 -0.001 -0.005 0.036 0.031 0.012

[ -0.015, 0.037 ] [ -0.013, 0.009 ] [ -0.033, 0.020 ] [ 0.014, 0.058 ] [ 0.010, 0.053 ] [ -0.005, 0.026 ]
Gm

i 0.001 0.000 -0.009 -0.005 0.006 -0.002
[ -0.016, 0.015 ] [ -0.008, 0.009 ] [ -0.024, 0.007 ] [ -0.021, 0.012 ] [ -0.010, 0.027 ] [ -0.010, 0.009 ]

Gf
i -0.008 0.004 0.009 -0.007 -0.001 0.004

[ -0.032, 0.014 ] [ -0.005, 0.013 ] [ -0.009, 0.030 ] [ -0.025, 0.012 ] [ -0.022, 0.014 ] [ -0.010, 0.018 ]
SESi 0.023 0.013 0.039 0.060 0.033 0.019

[ 0.006, 0.035 ] [ 0.006, 0.019 ] [ 0.026, 0.057 ] [ 0.045, 0.078 ] [ 0.021, 0.049 ] [ 0.010, 0.032 ]
ln θit 0.186 0.886 0.368 0.488 0.450

[ 0.145, 0.221 ] [ 0.682, 1.277 ] [ 0.314, 0.413 ] [ 0.422, 0.531 ] [ 0.371, 0.520 ]
ln Iit 0.085 0.131 0.136 0.274 0.167

[ 0.069, 0.101 ] [ 0.094, 0.170 ] [ 0.100, 0.193 ] [ 0.162, 0.369 ] [ 0.083, 0.260 ]
lnA 1.409 1.904 0.133 1.664 1.057 1.517

[ 1.392, 1.430 ] [ 1.805, 2.019 ] [ -0.998, 0.766 ] [ 1.364, 1.901 ] [ 0.761, 1.407 ] [ 1.142, 1.941 ]
E[ln θit] 1.409 2.560 2.993 3.249 3.408 3.512
V ar(ln θit) 0.030 0.012 0.058 0.089 0.074 0.034

Panel B: Girls
Ages 0-2 Ages 2-3 Ages 3-4 Ages 4-5 Ages 5-6 Ages 6-7

(1) (2) (3) (4) (5) (6)
Gi -0.009 0.003 0.008 0.023 0.013 0.003

[ -0.035, 0.013 ] [ -0.007, 0.013 ] [ -0.012, 0.023 ] [ 0.008, 0.044 ] [ -0.007, 0.034 ] [ -0.008, 0.013 ]
Gm

i 0.010 -0.002 0.003 -0.000 -0.001 -0.001
[ -0.007, 0.029 ] [ -0.010, 0.006 ] [ -0.010, 0.020 ] [ -0.014, 0.015 ] [ -0.013, 0.013 ] [ -0.009, 0.007 ]

Gf
i 0.006 -0.002 0.006 -0.009 0.000 -0.002

[ -0.015, 0.024 ] [ -0.010, 0.005 ] [ -0.007, 0.023 ] [ -0.023, 0.005 ] [ -0.015, 0.017 ] [ -0.012, 0.008 ]
SESi 0.032 0.020 0.036 0.063 0.043 0.012

[ 0.017, 0.049 ] [ 0.013, 0.027 ] [ 0.024, 0.049 ] [ 0.052, 0.080 ] [ 0.032, 0.059 ] [ 0.005, 0.021 ]
ln θit 0.209 0.793 0.318 0.459 0.425

[ 0.169, 0.256 ] [ 0.605, 1.146 ] [ 0.252, 0.359 ] [ 0.404, 0.501 ] [ 0.355, 0.505 ]
ln Iit 0.082 0.094 0.100 0.189 0.159

[ 0.064, 0.096 ] [ 0.056, 0.136 ] [ 0.069, 0.148 ] [ 0.127, 0.274 ] [ 0.086, 0.241 ]
lnA 1.458 1.951 0.584 2.007 1.431 1.621

[ 1.436, 1.485 ] [ 1.836, 2.066 ] [ -0.506, 1.219 ] [ 1.756, 2.248 ] [ 1.119, 1.717 ] [ 1.293, 1.980 ]
E[ln θit] 1.458 2.639 3.104 3.351 3.501 3.556
V ar(ln θit) 0.035 0.014 0.037 0.060 0.049 0.020

Notes: This table reports the parameter estimates for the technology of skill formation separately
for boys (Panel A) and girls (Panel B). We report the parameter for the initial skill function
(Equation 2) in the first column, and the parameter estimates for the technology of skill formation
(Equation 4) at different child ages in columns 2-6. We report the associated 95% bootstrap
confidence intervals in brackets.
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(c) Gender Gaps Across Gi

Figure 2: Distribution of Gender Gaps in Skills at Ages 6-7: This figure il-
lustrates the heterogeneity in the distribution of gender gaps across child genes (Gi) and
family socioeconomic status (SESi). The gaps are constructed as the difference in the av-
erage standardized skill for boys in comparison to girls at ages 6-7. A negative value means
that on average boys are lagging girls in skills. The figures show that the distribution of
gender gaps is not constant and that boys with lower propensity for education (low Gi)
and living in low SES families are those predominantly lagging girls in their development.
The graphs also compare the raw heterogeneity with the heterogeneity estimated after we
account for the correlation between model inputs. It shows that a significant proportion
of the heterogeneity in gender gaps across SES can be attributed to genetic mechanisms.
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(c) Gender gaps in Investment across Gi

Figure 3: Distribution of Gender Gaps in Investments at Ages 4-5: This figure
illustrates the heterogeneity in the distribution of parental investments and the underly-
ing mechanisms. The gaps are constructed as the difference in the average standardized
parental investment for boys in comparison to girls at ages 4-5. A negative value means
that on average boys receive lower levels of investments than girls. These figures show
that (i) the boys receive lower investments than girls, (ii) that boys with lower propensity
for education (low Gi) in particular receive lower levels of investment than similar girls,
(iii) that the heterogeneity in the investment gaps across genetics can be explained by
differences in the parental response to skills for boys and girls, and (iv) that even after we
equalize the policy function the gap in investments remain due to the gaps in skills and
the fact that parents tend to invest more in children with higher stock of skills.
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(c) Gender gaps in Skills across Gi

Figure 4: Parental Investments and Gender Gaps in Skills at Ages 6-7: This
figure illustrates how the heterogeneity in gender gaps in skills is dependent on gender
differences in parental investments. The skill gaps are constructed as the difference in the
average standardized skills for boys in comparison to girls at ages 6-7. A negative value
means that on average boys lag in development to similar girls.
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Figure 5: Technology of Skill Formation and Gender Gaps in Skills at Ages
6-7: This figure illustrates how the heterogeneity in gender gaps in skills is dependent on
gender differences in the technology of skill formation. The skill gaps are constructed as
the difference in the average standardized skills for boys in comparison to girls at ages 6-7.
A negative value means that on average boys lag in development to similar girls.
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Appendix
“Gender Differences in the Genetics of Skill Formation”

Mikkel Aagaard Houmark and Victor Ronda

Appendix A Additional Information on Identification and Estimation

Appendix A.1 Identifying Assumptions

Identification of the joint evolution of skills and investments is based on a factor analytic

approach as in Cunha and Heckman (2008) and Cunha, Heckman, and Schennach (2010). We

observe multiple measures of children’s skills and parental investments in each period. While

each measure is an imperfect proxy of the underlying skill or investment, the availability of

multiple measures of the same construct can be used to identify the underlying latent skill

or investment. Similarly, the evolution of skills can be tracked by the availability of the same

measure across different periods. We rely on a similar idea to identify the distribution of

genetic factors. We follow the approach outlined in Houmark, Ronda, and Rosholm (2024)

that relies on three distinct measures of the genetic factor (different polygenic scores) to

identify the distribution of the child’s and parents’ genetic factors.

Appendix A.1.1 Identification of Latent Skills and Investments

Formally, in each period t, we observe J measurements of the child’s skills and K measure-

ments of parental investments. Let mθ
ijt denote the jth measurement of child i’s skill at

period t, and let mI
ikt denote the kth measurement of child i’s parental investment at period

t. Following Attanasio, Meghir, and Nix (2020) and Agostinelli and Wiswall (2020), we

assume a linear-log relationship between each measurement, the latent child skills θit, and

latent parental investments Iit:

mθ
ijt = µθ

j,t,g + λθ
j,t,g · ln θit + νθ

ijt (13)

mI
ikt = µI

k,t,g + λI
k,t,g · ln Iit + νI

ikt (14)

where νθ
ijt and νI

ikt are i.i.d. measurement errors and λθ
j,t,g and λI

j,t,g are the factor loading

for skill measurement j and investment measurement k for gender g, meaning that we allow

these parameters to differ across gender.13 As in Agostinelli and Wiswall (2020), we make

no further assumptions on the distribution of the measurement errors.

13We don’t find that differences in these parameters across gender are statistically significant. Also, in
estimates upon request, we forced the system to be gender the same for boys and girls and found no significant
difference in the estimates of the technology of skill formation and investment policy function.
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Identification of the system is based on the assumption that the measurement errors

are independent of each other and independent across time and on normalization on the

location and scale of the latent factor. We refer the reader to Agostinelli and Wiswall

(2020), Houmark, Ronda, and Rosholm (2024) for more details on the assumptions required

for identification. In addition to these assumptions, identification of the evolution of the

latent factor require further restrictions on the location and scale of the latent factor. In

particular, it requires us to observe the same measurement over time and impose the same

value for the factor loading for that measurement over all the different periods. In practice,

we are fixing the scale of the latent factor against this age-invariant measure.

To identify the latent investment, we chose the “Frequency the child goes to places of

interest” as our age-invariant measure since it is available across all periods and is strongly

related to parental investments (see Table 2).14 Unfortunately, we do not have a measure

that is asked at all periods for the latent skill. Our measures of skills capture different child

development achievements, such as being able to use plurals or read simple words. These

achievements are age specific since most children are able to complete some of the tasks after

a certain age, and few young children can complete other tasks. For this reason, no question

is put to the child in all six periods. Identification is then obtained from two separate

measures that are asked at many but not all periods (see Table 1). The survey asks whether

the child “Can build a tower of 8 bricks” in periods 0, 1, and 2. Similarly, the survey asks

the mother if the child “Can play card games (or board games)” in periods 1, 2, 3, 4, and 5.

Since the two measures overlap at some periods and cover all periods together, we use them

to identify the location and scale of the latent skills across periods. Other combinations are

possible and do not alter our main findings.

Formally, let the measure “Frequency the child goes to places of interest” be described

by k = 1, “Can build a tower of 8 bricks” be described by j = 1 and “Can play card games

(or board games)” by j = 2, we make the following normalizing assumption on the three

measures:

mI
i1t = 0 + 1 · ln Iit + νI

i1t for t ∈ {0, 1, 2, 3, 4} and g ∈ {m, f} (15)

14Other measures that are available across all periods are “Frequency the child goes to a library”, “Fre-
quency the mother reads to the child”, and the “Frequency the mum’s partner sings to the child”. Results
are similar when we use one of the other three measures to fix the scale of parental investments.

44



and

mθ
i1t = 0 + 1 · ln θit + νθ

i1t for t ∈ {0, 1, 2} and g ∈ {m, f} (16)

mθ
i2t = µ2,1,g + λ2,1,g · ln θit + νθ

i2t for t ∈ {1, 2, 3, 4, 5} and g ∈ {m, f} (17)

where µ2,1,g and λ2,1,g are identified in period 1 using the normalization on the first measure.

Since we impose the same location restriction for both boys and girls, this restriction also

helps us identify differences in skills and parental investments across gender. In fact, such a

restriction is necessary for us to identify gender differences, otherwise we cannot separately

identify gender differences in the underlying latent skills to gender differences in the factor

loadings relating these latent skills to the observed measures.

Appendix A.1.2 Identifying the Genetic Factor

In Houmark, Ronda, and Rosholm (2024), we show that a similar logic can be applied to

identify the genetic factor of children and their parents. The approach relies on assuming

the latent genetic factor is a linear combination of different genetic makers in the same way

that polygenic scores are constructed,15 and on the availability of three distinct polygenic

scores.

Formally, let pgii,p be a polygenic index for a trait related to Gi, we assume that:

pgii,p = λG
p,gGi + ζpi for g ∈ {m, f} (18)

Identification of the genetic factor relies on the assumption that the measurement error

is independent across PGIs. That is, it relies on the assumption that:

ζpi ⊥⊥ ζp
′

i ∀p ̸= p′ (19)

This assumption is plausible for PGIs constructed from independent GWA studies with no

sample overlap if we assume that ηpj mainly captures estimation error in the GWAS. However,

this assumption would not hold if the βjs are systematically misestimated, for example, due

to not correctly controlling for population stratification in the GWAS. In this case, the bias

for each SNP would be similar across GWA studies, and Assumption 19 would fail. As

a general rule, any bias in the original GWAS will carry over to downstream analyses and

15As explained in Houmark, Ronda, and Rosholm (2024), at first this seems like a very strong assump-
tion. However, there is much empirical and theoretical evidence that most genetic variance for polygenic
phenotypes can be explained by the additive (linear) component (see, for example, the discussion in Hill,
Goddard, and Visscher, 2008).
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cannot be addressed ex-post using standard measurement error methods. This highlights the

importance of a proper GWAS design for any downstream analyses. Since there are only two

large independent GWA studies of educational attainment, we rely on a PGI constructed

from the cognition GWAS as our third measure of the genetic factor. Suppose we again

assume that ηpj captures only the estimation error in the GWAS. In that case, it is also

plausible that Assumption 19 will hold for PGIs constructed using two distinct, but related,

outcomes since there will be overlap in the genetic signal from the two outcomes, but the

estimation error will be independent across the two estimates.

More importantly for the current analyses, we need to assume that the relationship be-

tween Gi, the true unobserved genetic factor for skill formation, and the observed polygenic

index pgii,p is the same for boys and girls. This assumption is required for us to understand

gender differences in the genetics of skill formation. The reason is that we cannot separately

identify whether the observed gender differences in the relationship between the polygenic

indexes and skills are due to gender differences in the relationship between the unobserved

genetic factor and skills or due to gender differences in the relationship between the poly-

genic indexes and the unobserved genetic factor. This is important to keep in mind when

interpreting the results in our paper.

Appendix A.2 Estimation

Estimation of the model parameters is done in two steps. We first estimate all the param-

eters in the measurement systems for each skill, investment, and genetic factor. These are

estimated separately for each gender using the variance-covariance matrix of the measure-

ments for each latent factor. Once the measurement systems are estimated, we proceed with

the estimation of the parameters in the technology of skill formation and investment policy

function. The estimation strategy follows the approach described in Agostinelli and Wiswall

(2020) and Houmark, Ronda, and Rosholm (2024).

Appendix A.2.1 Estimation of the Measurement System

Given the normalization restrictions, we can estimate all parameters of the measurement

system for latent skills and investments and the means and distribution of the latent variables.

The parameters of the measurement system include the factor loadings (λθ
jt and λI

kt), the

measurement means (µθ
jt and µI

kt) and the variance of the measurement errors (σ2
jt,θ and

σ2
kt,I). These parameters can be estimated directly from ratios of the covariance between

different measurements, from the measurement means, and from the measurement variance.
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Consider three measurements of latent investments in period 1 (mI
11, mI

21, and mI
31).

Recall that we assume λI
11 = 1 and that the measurement errors are independent, so we can

write the covariance between each pair of measurements as:

Cov(mI
11,m

I
21) = 1 · λI

21 · V ar(ln I1)

Cov(mI
11,m

I
31) = 1 · λI

31 · V ar(ln I1)

Cov(mI
21,m

I
31) =λI

21 · λI
31 · V ar(ln I1)

As first shown in Carneiro, Hansen, and Heckman (2003), we can use these three identities

to identify the three unknowns (λI
21, λ

I
31 and V ar(ln I1)). To see this, note that:

V ar(ln I1) =
Cov(mI

11,m
I
21) · Cov(mI

11,m
I
31)

Cov(mI
21,m

I
31)

λI
21 =

Cov(mI
21,m

I
31)

Cov(mI
11,m

I
31)

λI
31 =

Cov(mI
21,m

I
31)

Cov(mI
11,m

I
21)

We can extend this procedure to include additional measurements beyond the first three.

When the model is over-identified we take the means of different combinations of measure-

ments as our estimates. The procedure can be applied to all periods to identify all factor

loadings (λI
kt). The factor loadings for the latent skills can be identified in a similar manner,

with the additional step that we must first estimate λ21 before estimating the factor loadings

in the later periods.

Once the variance of the latent variable (V ar(ln It) and V ar(ln θt)) and the factor loadings

are identified, we can also identify the mean of the latent variables (E[ln It] and E[ln θt]), and

then the measurement means (µI
kt and µθ

jt). To see this, note that since we assume µI
1t = 0,

we have that:

E[ln It] = E[mI
1t]

Similarly, we have that:

µI
kt = E[mI

kt]− λI
kt · E[ln It]

The estimation procedure for the latent skill is similar but with the additional step that we

need to set µθ
2t = µθ

21, which can be identified in period 1 from the assumption that µθ
11 = 0.
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Lastly, once all other parameters are identified, we can identify the variance of the mea-

surement errors (σ2
jt,θ and σ2

kt,I) from each measurement variance. These follow from the

following identity:

σ2
kt,I =V ar(mI

kt)− (λI
kt)

2 · V ar(ln It)

σ2
jt,θ =V ar(mθ

jt)− (λθ
jt)

2 · V ar(ln θt)

Appendix A.2.2 Estimation of Genetic Factor Measurement System

The availability of three polygenic indexes that satisfy Assumption (19) is sufficient to iden-

tify Gi. To see that, without loss of generality, assume that V ar(Gi) = 1 and E[Gi] = 0.

Then the λG
p can be identified by the covariances between the three indexes:

Cov(pgii,1, pgii,2) = λG
1 λ

G
2 V ar(G1) + Cov(ζ1i , ζ

2
i ) (20)

= λG
1 λ

G
2 (21)

So that:

λG
1 =

Cov(pgii,1, pgii,2) ∗ Cov(pgii,1, pgii,3)

Cov(pgii,2, pgii,3)
(22)

Appendix A.3 Estimating the Technology of Skill Formation and the Invest-

ment Policy Function

Once the parameters of the measurement system are identified, we can estimate the remain-

ing parameters in the technology of skill formation (Equation 4), the investment function

(Equation 3), and in the early skills function (Equation 2). To do so, we again follow

Agostinelli and Wiswall (2020) and construct “residual” measures of skills and investments.

The residual measures can be used in a regression framework to identify the remaining pa-

rameters in the model. Formally, for each measure of latent skills, investments, and genetic

factor, we construct “residual measures” by subtracting the estimated measurement mean
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and dividing by the estimated factor loading, such that:

m̃θ
ijt =

mθ
ijt − µθ

jt

λθ
jt

= ln θit +
νθ
ijt

λθ
jt

(23)

m̃I
ikt =

mI
ikt − µI

kt

λI
kt

= ln Iit +
νI
ikt

λI
kt

(24)

p̃gii,p =
pgii,p
λG
p

= Gi +
ζpi
λG
p

(25)

We use these residual measures to estimate the remaining parameters. For example, to

estimate the investment policy function (Equation 3), we can use the kth residual measure-

ment for the latent investment, the jth residual measurement for the latent skill, and the

kth residual genetic factor for the latent genetic factor instead of the true unobserved latent

variables.16

m̃I
ikt = γ1,tm̃

θ
ijt + γ2,t p̃gii,p + γ3,t p̃gi

m

i,p + γ4,t p̃gi
f

i,p + γx,t X
I
it + η̃it (26)

where η̃it = ηit +
νIikt
λI
kt

− γ1,t
νθijt
λθ
jt
− γ2,t

ζpi
λG
p
− γ3,t

ζp,mi

λG,m
p

− γ4,t
ζp,fi

λG,f
p

.

Estimation of equation 26 by OLS would yield inconsistent estimates of the γ coefficients

because the residual measures are correlated with their measurement errors which are in-

cluded in the residual term η̃it. A common solution in the literature, which we follow here, is

to use an instrumental variables estimator with the vector of excluded measurements [mθ
ij′t]

as instruments for m̃θ
ijt, and [pgii,p′ ] as instruments for p̃gii,p. This instrumental variables

strategy yields consistent estimators of the γ coefficients. A similar approach is used to

estimate the parameters of the technology of skill formation (eq. 4) and early skills function

(eq. 2). Since this is an innovation, we also prove the consistency of our IV estimator when

using imputed parental polygenic indexes. We show the proof in Appendix C.

The key identifying assumption is that all shocks and measurement errors are independent

of each other and across time. Formally, we array the skill formation shocks ϵt in a vector ϵ,

16In practice, we can use all possible combinations of investments and skill measurements to estimate the
model parameters. There are many possible ways to use this large amount of measures. In our preferred
specification, our parameters are averages of all possible combinations of measures for each period.
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the investment shocks ηt in a vector η, and assume that

ϵt ⊥⊥ ϵt′ ∀t ̸= t′, (27)

ηt ⊥⊥ ηt′ ∀t ̸= t′, (28)

ϵ ⊥⊥ η, (29)

(ϵ, η) ⊥⊥ (νθνI, ζ). (30)

Assumptions (27) and (28) maintain the independence of the shocks over time, and (29)

maintains the independence between shocks to investments and skills. This means that

we treat shocks and innovations to the investment policy function as exogenous. This is a

potentially strong assumption that is commonly made in the literature (see, e.g., Agostinelli

and Wiswall, 2020). Relaxing this assumption is possible if instruments are available, as

in Attanasio et al. (2020). Common instruments are price variations across regions and

across time. Unfortunately, our sample was born in the same year and region, making it

difficult for the same strategy to be implemented. In addition, we need to assume that the

measurement errors are independent of the shocks to investments and skills (Assumption

30). This assumption means that conditional on the latent investments (Iit), skills (θit), and

genetic factors (Gi, G
m
i , G

f
i ) the remaining information on the measurements is unrelated

to the process of skill formation.

There are other important assumptions in how we specify our model. In particular, it is

worth highlighting that we assume that the relationship between log-latent investments and

skills and the measures of those latent variables is linear and homogeneous across families

(Equation 6). This assumption could be violated in a variety of ways. One such violation

could happen if a given parent-child interaction does not reflect the underlying latent in-

vestment in the same way across different families. Say, for example, that for high PGI

parents, taking their child to a ’place of interest’ is a strong signal of investment in child skill

formation, whereas for low PGI parents, going to a ’place of interest’ is a less strong signal of

investment, perhaps because the different families go to different places. In this scenario, λI
k

would be different for different families, which is a violation of our model. Unfortunately, we

cannot test for this type of violation, and allowing for heterogeneity in λI
k would significantly

complicate our estimation and identification strategies.
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